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Abstract
Understanding the dynamics of spreading and diffusion on networks is of critical importance for a
variety of processes in real life. However, predicting the temporal evolution of diffusion on
networks remains challenging as the process is shaped by network topology, spreading
non-linearities, and heterogeneous adaptation behavior. In this study, we propose the ‘spindle
vector’, a new network topological feature, which shapes nodes according to the distance from the
root node. The spindle vector captures the relative order of nodes in diffusion propagation, thus
allowing us to approximate the spatiotemporal evolution of diffusion dynamics on networks. The
approximation simplifies the detailed connections of node pairs by only focusing on the nodal
count within individual layers and the interlayer connections, seeking a compromise between
efficiency and complexity. Through experiments on various networks, we show that our method
outperforms the state-of-the-art on BA networks with an average improvement of 38.6% on the
mean absolute error. Additionally, the predictive accuracy of our method exhibits a notable
convergence with the pairwise approximation approach with the increasing presence of
quadrangles and pentagons in WS networks. The new metric provides a general and
computationally efficient approach to predict network diffusion problems and is of potential for a
large range of network applications.

1. Introduction

Network diffusion modeling is a priority for predicting information propagation, guiding epidemic
responses, etc. During diffusion processes, contagious elements, like infectious diseases, information, etc
propagate according to the network topology. As a ubiquitous process in networks, diffusion plays a key role
in applications ranging from information propagation [1], epidemic spreading [2, 3], and adaptation to new
technologies [4], to changes in behavior [5–8]. From the microscopic perspective, diffusion propagation
among the individual nodes is highly affected by their properties and contacts, and possibly whom they are
connected to. From the mesoscopic perspective, diffusion on networks depends on the local wiring of the
network, characteristics of the carrier, and other environmental or spatial factors [9]. From the global
perspective, the large-scale network structure, interventions, and the evolution of the pathogens or
information spreading, affect the outcome of the diffusion process. This interplay with factors at various
levels makes the analysis of network diffusion highly challenging.

Various models [10–13] have been proposed to characterize such diffusion processes, where the most
straightforward and intuitive scenario is epidemic-like models where the disease is transmitted from
infectious individuals (I) to the susceptible (S) when they interact with each other. Compartmental models
[14–16], such as SIS, SIR, SEIR, etc are typically applied to study epidemic-like diffusion phenomena and
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predict dynamics making the simplifying assumption that all individuals interact with each other with the
same probability [17–19]. A wave of research has focused on the effects of network structure on spreading
dynamics, including degree distributions, clustering, assortativity and communities on epidemic spreading
velocity [20], epidemic size [21], and epidemic thresholds [22].

From a theoretical perspective, the heterogeneous mean-field [23] (HMF) approach assumes that nodes
with the same degree are statistically equivalent, and the quenched mean-field [24] (QMF) approach
describes the full network structure using the adjacency matrix. Although QMF improves predictions of
outbreak sizes and thresholds relative to HMF, it overestimates the infection probability of susceptible
vertices because of dynamic correlations among the infectious states of vertices, generated by the wave of
infectious spreading through the network [25–27]. The weakness of the QMF approach is remedied e.g. by
dynamic message-passing [28] (DMP), or the pairwise approximation [14] (PA) approach. Although these
approaches provide more accurate epidemic size and threshold predictions, the numerical solution is
time-consuming, which is an obstacle to wide application.

The key dynamic characteristic of a vertex on networks for our purposes is its role within the hierarchical
structure of the network [29]. The hierarchical structure of a root node describes the immediate
neighborhood and high-order neighborhoods [30] up to a maximal distance. The distribution of the
number of nodes in the hierarchical structure from a specific node is characterized by a very rapid growth for
short distances, followed by an exponential decay [31]. Similar to the k-shell [32], the hierarchical shell l of a
network is defined as the set of nodes that are at distance l from a randomly chosen root node. A
discriminative and computationally efficient metric based on the hierarchical structure is successfully
utilized to measure the heterogeneity of a network in terms of connectivity distances, thus distinguishing and
quantifying network dissimilarities [33, 34]. Concentrated on the dissimilarity metric, several researches
have already sprung up, such as influential nodes identification [35], diffusion capacity of interconnected
networks [36], filtering and compression of weighted networks [37], link prediction in multiplex networks
[38], and evaluation of community vulnerability [39]. Obviously, the structure of the hierarchical shell is
important for understanding the network’s diffusion properties since propagation precisely occurs shell after
shell [40], but its application with respect to diffusion prediction has been largely ignored, and whether the
diffusion-wise hierarchical shell provides more information on spreading prediction has not been
investigated.

In this work, we will propose a novel theoretical scheme, the spindle approximation (SA) to approximate
network diffusion. SA uses the hierarchical structure characterized via the so-called spindle vector and
obtained by the breadth-first-search (BFS) process. The BFS process starts at the root node and visits all
nodes at the current hierarchical layer before moving on to the nodes at the next hierarchical layer. For the
SA, we decompose the epidemic-like diffusion process and find that the diffusion tree is always a possible
spanning tree of the hierarchical structure and that the infection sequence of the SI model shows an outbreak
pattern which is similar to the spindle vector. These similarities support the idea of basing diffusion
modeling on hierarchical structures. We will pursue this idea by asking: First, how the hierarchical structure
should be utilized to approximate network spreading on networks? Second, is the approximation better than
any other methods for modeling the spreading dynamics?

SA resolves a network as a spindle-shaped multilayered network according to the hierarchical structure
and considers effective infections from former layers and the same layer. To reduce the complexity of SA, we
simplify it by mean-field theory to an approximation theory called SA∗, which assumes that the number of
neighbors is equivalent for nodes in the identical layer and estimated as the average connections. We find that
the hierarchical structure enables the outperformance of SA∗ compared with QMF, DMP and PA methods
on BA networks, and that the less complex SA∗ provides more powerful prediction than SA in most WS and
BA networks. The successful application of hierarchical structure in infection prediction calls for more
analysis of the hierarchical structure.

2. Results

2.1. Hierarchical structure and network diffusion
At a given time in a diffusion process, the number of nodes in close contact with the infectious nodes is the
fundamental predictor for the immediate propagation of the infection. For example, an infection starting
from a source v will first propagate to some of its nearest neighbors, then to those that are two steps away
from v, and so on. In the most extreme scenario, if the infection follows the SI model with an infection
probability of β= 1, the spreading becomes the BFS process and is characterized by the hierarchical
structure. The number of infected nodes at time t will be the number of nodes at most t steps away from v.
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Figure 1. Similar patterns of hierarchical structure and SI dynamics. In a highly clustered network, the node sequence of
hierarchical structure (HS), i.e. the number of neighbors that are high-order steps away from the root, can qualitatively indicate
the times of diffusion outbreaks, and gradually approximate the spatio-temporal evolution of diffusions with β quantitively. (a)
and (b) map the same network as different multilayered networks according to the hierarchical structure starting from v1 and v2,
respectively. The root node is denoted as layer 0, and different colors correspond to various layers. (c) and (d) show the
distribution of infected nodes with various β, and the similarity with HS.

To further exemplify the relation between the hierarchical structure and diffusion evolution, we focus on
BFS processes and virus transmission shaped by SI model starting from vertex v1 and v2 on the same network
(see figures 1(a) and (b)). The hierarchical structure shows a similar pattern with an infection sequence.
Specifically, both BFS processes and virus transmission originating from v1 show two peaks, while those
starting from v2 have only one peak. More importantly, the distributions are more aligned when β is closer to
one (see figures 1(c) and (d)).

2.2. Spindle vector
The hierarchical structure characterizes a BFS process and is also critical for describing how diffusion will
occur. In most networks, elements in this sequence usually start with small numbers, i.e. the degree of the
root vertex, increase until the peak and then reduce to a small number again at the most distant neighbors.

We describe this pattern as a ‘nodal spindle’ and name S⃗ip as a new metric characterizing the diffusion
capability of vertex i which is expressed as

S⃗ip =
(
ni0,n

i
1, . . .,n

i
Li

)
(1)

where niLi denotes the fraction of vertices in layer Li, and the root vertex is viewed as layer 0.

Different roots may give rise to various characteristics of hierarchical structure, or distinct S⃗ip , in the
identical network. To integrate the overall hierarchical structure and describe the diffusion capability of
networks, we average S⃗ip over all nodes and get the ‘network spindle’ which is characterized by S⃗p (shown in
figure 2)

S⃗p =
∑

S⃗ip/N=
(
S⃗ip (0) , S⃗

i
p (1) , . . ., S⃗

i
p (Lmax)

)
(2)
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Figure 2. Illustration of nodal spindles and the network spindle of the sample network in figure 1. Nodal spindles shape the
network according to the distance of nodes to the root. The width of the spindle profiles reflects the number of nodes at that layer.
The network spindle aggregates all nodal spindles and describes the distribution of nodal distance.

where
∑

S⃗ip is the summation operator of vectors with various lengths, and Lmax is the total number of layers.

Specifically, S⃗ip( j) denotes the average number of vertices in layer j over all nodes

S⃗p ( j) =
∑

i∈Θ(Bj)

nij/N (3)

whereΘ(Bj)( j = 0,1, . . .,Lmax) is the set of nodes from which layer j can be reached through BFS process.
As a variation of nodal distance distribution, the nodal spindle does not always illustrate unimodal

distribution, such as for the center node of a star network. However, the network spindle, aggregating all
nodal spindles, always depicts two narrow poles which can be described as a spindle. To unify the metric for
nodes and networks, we extend the definition of distance distribution to spindle in the broad sense. More
importantly, the network spindle incorporates some intrinsic characteristics of networks, such as the average
degree (⟨k⟩), the average distance (Λ), node betweenness (Bv) and edge betweenness (Be) which are proved in
appendix D.

Lemma 1. The total number of layers Lmax is the diameter of networks D, i.e. Lmax = |⃗Sp|= D.

Lemma 2. S⃗p(0) is the reciprocal of N, i.e. S⃗p(0) = 1/N.

Lemma 3. S⃗p(1) is a linear functions of ⟨k⟩, specifically, S⃗p(1) = ⟨k⟩/N.

Lemma 4. The area under the curve of S⃗p approximates to Λ of networks, i.e.
∑Lmax

j=0 jS⃗p( j) = Λ(N− 1)/N

Lemma 5. On tree networks with Poisson degree distribution, S⃗p(2) can be expressed as S⃗p(2) = (
⟨
k2
⟩
−⟨k⟩)/N.

Lemma 6. The sum of Bv and Be over all nodes can both be expressed as the function of the area under the curve
of S⃗p. ∑

i∈V

Bv (i) =
N

N− 2
(Λ− 1) =

N2

(N− 2)(N− 1)

∑Lmax

j=0 j⃗Sp ( j)−
N

N− 2
(4)

∑
l∈E

Be (l) = Λ =
N

N− 1

∑Lmax

j=0 j⃗Sp ( j) (5)

2.3. SA and SA∗methods on synthetic networks
The SA methodology is centered on modeling the epidemic propagation from neighboring nodes in the
preceding and current layers, utilizing detailed information about node-specific connections within these
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Figure 3. Comparison of different epidemic approximating methods on BA network with N= 1000,m= 2. SA∗ produces the
most similar spreading process to the Monte Carlo simulation (MC) originating from node with the minimum degree under the
SI model with β = 1/3.(a) illustrates the layout of nodal spindle structure. It treats the original network as a multilayer one with
different colors indicating various layers. Light cyan and gray edges respectively display the connections between layers and within
layers. The size of nodes means the degree centrality in the underlying network. (b) represents the layout of degree-based layer.
Nodes are equally distributed on concentric circles where the radius represents the degree centrality. The size and color denote the
degree of vertices. (c) shows the cumulative distribution of infections under PA, QMF, DMP, SA, SA∗ approximation and MC
simulation with β = 1/3.

layers. The SA∗ variant homogenizes nodes within the same layer and estimates the neighbors in the former
and identical layer as the average connections using the mean-field method. Given that the maximal nodal
distance within a network is typically significantly smaller than the network’s magnitude, SA and SA∗

notably curtail the number of requisite equations to fewer than D. This reduction stands in stark contrast to
the N equations necessitated in QMF, N+ 2E in DMP, and N+ 4E in PA approach. Further, SA∗ adopts a
mesoscopic point for epidemic approximation, centering its focus on the quantification of nodes across each
layer and the interlayer as well as intralayer connections. This approach deliberately eschews the intricate
mapping of pairwise nodal connections, offering a more generalized yet insightful perspective into epidemic
dynamics.

We use a BA network with N = 1000 andm= 2 to first test the performance of our method compared
with QMF, DMP and PA, in predicting epidemic propagation originating from a single node with the
minimum degree (see figure 3). The ground truth is the average infection originating from the node on a SI
process with β = 1/3 under Monte Carlo simulation 100 times. The layouts of the nodal spindle structure,
i.e. the hierarchical layer, and degree-based layer of the corresponding network are shown in figures 3(a) and
(b). The approximations from theoretical methods shown in figure 3(c) indicate that SA and SA∗ perform
better than QMF, and that SA∗ is even more powerful than DMP and PA which take the dynamical
correlations among the states of the nodes into consideration. Specifically, SA∗ provides the most precise
prediction with the mean absolute error (MAE) equaling 0.0113, smaller than those of SA, QMF, DMP, PA
methods, i.e. MAESA = 0.0282, MAEQMF = 0.0358, MAEDMP = 0.0147, MAEPA = 0.0147.

5
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Figure 4. Comparison of different epidemic approximating methods on empirical sample networks. SA∗ provides the best
prediction of epidemic from the root with the minimum degree on both densely and sparsely connected networks under the SI
model with β = 1/3. (a) and (b) are the regular layouts of Windsurfers and Ego-Facebook networks. The color and size of
vertices represent the degree centrality in (a), while the color denotes the community structure in (b). (c) and (d) show the
network spindles of corresponding networks. (e) and (f) illustrate the performance of PA, QMF, DMP, SA and SA∗ on predicting
propagation. The insets illustrate the corresponding nodal spindle-shaped structure.

We repeat the approximation with 100 different source nodes and average the MAE to assess the
performance of the proposed method. The synthetic networks include WS networks with different rewiring
probability (pWS

r ∈ [0.01,0.05,0.1,0.5,0.9]) and BA networks with different number of edges for new
attaching nodes (m ∈ [2,3,4,5]). Experiments on synthetic networks indicate that SA, SA∗ method predicts
the temporal evolution of diffusion dynamics on BA networks better than those on WS networks, and that
SA∗ is more efficient than SA on most BA and WS networks. For the SA method, the MAE of BA networks
ranges from 0.0134 to 0.0383 with an average of 0.0234, much smaller than that of WS networks ranging
from 0.0126 to 0.2058 with an average of 0.0966. For the SA∗ method, the average MAE on BA and WS
networks equals 0.0154 and 0.0906, respectively. More importantly, SA∗ outperforms QMF, DMP and PA in
all BA networks with an average improvement of 38.6% on MAE with 95% confidence interval [36.7%,
40.6%], while SA∗ can only produce more precise prediction than QMF on WS networks with high rewiring
probability bigger than 0.5 (see appendix A tables A1 and A2). Theoretically, WS networks with high
rewiring probability usually induce a low clustering coefficient, reducing the connections within the same
layer shaped by the nodal spindle. The few connections decrease the complexity of correlations among the
states of neighboring nodes, thus facilitating the propagation prediction by SA∗ for its advantage in partially
dealing with the correlations which is missing in QMF.

In addition, we also check the performance of SA on scale-free networks with the power law γ > 3 using
the uncorrelated configuration model [41] with the minimum degreem= 4. Results illustrate that all
approximations generated larger MAE to predict the epidemic propagation process, while SA∗ is consistently
superior to QMF and inferior to PA and DMP in these networks, which is compatible with the findings on
WS networks (see appendix B figure B1).

2.4. SA and SA∗methods on empirical networks
Next, we illustrate the performance of SA and SA∗ under the SI epidemic process on Windsurfers [42] and
Ego-Facebook [43] networks. As shown in figure 4, SA∗ provides the best prediction of the epidemic from

6
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Table 1. The performance of SA∗ compared to QMF, PA in diffusion prediction on empirical networks.

Networks MAEPA MAEQMF MAESA∗ RIQMF RIPA

Caenorhabditis 0.017 0.019 0.019 0.042 0.123
Ego-facebook 0.038 0.059 0.033 −0.429 −0.117
Iceland 0.029 0.043 0.039 −0.082 0.357
Interactome_vidal 0.035 0.044 0.046 0.030 0.300
Karate 0.021 0.025 0.023 −0.065 0.123
Metabolic_ana 0.028 0.032 0.029 −0.084 0.060
Metabolic_blo 0.027 0.031 0.028 −0.094 0.071
Ugandan 0.011 0.013 0.011 −0.204 −0.002
Windsurfers 0.013 0.012 0.012 0.024 −0.019
Zebras 0.011 0.012 0.013 0.078 0.199

Note: Relative Improvement RIQMF = (MAESA∗ −MAEQMF)/MAEQMF,

RIPA = (MAESA∗ −MAEPA/MAEPA).

Figure 5. The effect of topological features on approximating methods in synthetic networks. The average distance (Λ),
modularity (Q) and clustering coefficient (C) show a linear and nonlinear positive influence on MAE of all methods on BA and
WS networks, respectively. Considering the nonsignificant clustering structure in BA networks, we analyze the effect of C in PLC
networks in (c).

the root with the minimum degree on both densely and sparsely connected networks. We repeat the
approximation with 100 different source nodes for empirical networks. Our experiments demonstrate that
SA∗ outperforms SA in all 10 empirical networks. For SA∗ method, MAE ranges from 0.0106 to 0.0455 with
an average of 0.0255, smaller than SA method ranging from 0.0181 to 0.0471 with an average of 0.0298 (see
appendix A table A3). More importantly, SA∗ demonstrates comparable or superior performance to QMF,
and shows predictions that are not significantly worse and, in some cases, even superior to PA and DMP.
Specifically, SA∗ outperforms QMF in 60% of real networks with an average improvement of 7.8% on MAE,
while it surpasses PA in 30% of real networks (see table 1 and appendix A table A3).

2.5. Sensitivity analysis
To understand the performance of SA and SA∗, we further investigate how performance changes with the
network topological features. Specifically, we measure MAE for networks with varying average distance (Λ),
modularity (Q) and clustering coefficients (C). Λ, Q in BA networks and C in PLC networks (Scale-free
networks with adjustable clustering coefficients), all have a linear positive influence on MAE of all
approximating methods, while those in WS networks illustrate nonlinear positive effect (see figure 5). Except
for triangles described by C, we find that the number of quadrangles (Qua) and pentagons (Pen) show a
negative effect on the performance of all approximating methods. In addition, the superiority of SA∗

increases with the number of quadrangles and pentagons in BA networks, and the epidemic prediction of

7



New J. Phys. 26 (2024) 043027 J Mou et al

Figure 6. The effect of quadrangles and pentagons on approximating methods in synthetic networks. The number of quadrangles
(Qua) and pentagons (Pen) show a negative effect on the performance of all methods. The outperformance of SA∗ compared to PA
increases with Qua and Pen on BA networks, while the prediction by SA∗ illustrates a stable tendency approximating to that of PA
with both Qua and Pen on WS networks. Gap in (c) and (f) denotes the difference of MAE between PA and SA∗.

SA∗ is nearly identical to that of PA method on WS networks with more than 1000 quadrangles or 3000
pentagons (see figure 6). Large Qua and Pen are associated with low clustering coefficient on WS networks
(see appendix A table A2), which is in turn explainable to the observation.

Theoretically, considering the relationship Λ≈
∑Lmax

l=1 lS⃗p(l), large Λ usually produces a flat and long

distribution of S⃗p in WS networks and induces the cumulation of prediction error. Moreover, the nonlinear
positive relationship between Q, C and Λ in WS networks explains the effect of Q and C on MAE. In BA
networks, the small C described by C∼ (lnt)2/t and short Λ induced by Λ∼ lnN/lnlnN respectively witness
sparse connections within the same layer and reduce the cumulation of error, thus supporting the better
prediction. In addition, quadrangles and pentagons illustrate the weak dynamic correlation among
neighbors for the lack of connections within the same layer under the projection of spindle structure.

In addition, to understand the effect of infection rate on diffusion prediction, we investigate how the
performance of the proposed methods changes along with β. Generally, SA is more powerful than SA∗ when
β = 1/10, and SA or SA∗ significantly outperforms DMP, QMF and PA on most BA networks regardless of β.
For WS networks, SA∗ illustrates a non-significant improvement compared to other methods, except for
slight superiority to PA in several cases (see figure 7).

3. Conclusions and outlook

Diffusion on networks propagates through the direct interaction among vertices, of which the temporal
evolution is determined by the distance of vertices from the source. Interestingly, the spindle vector is capable
of quantifying the hierarchical structure from a source and describing the feature of the propagation chain,
thus providing an interesting view of the diffusion dynamics. Based on this new network feature, the
proposed SA and SA∗ methods demonstrate their superiority over the state-of-the-art in predicting the
temporal evolution of spreading dynamics on many synthetic and empirical networks. This work extends the
existing literature on diffusion prediction in two ways. First, we demonstrate that the hierarchical structure
of networks exhibits the intrinsic diffusion pattern, and define nodal spindle vector and network spindle
vector to quantify the diffusion ability of vertices and networks. Second, we propose a novel approximation
method based on the spindle vector and successfully seek a compromise between efficiency and complexity.
Notably, the SA∗ approach is only based on the count of nodes in each BFS layer and the connection between
different layers, ignoring the whole network information. More importantly, it outperforms the
state-of-the-art on BA networks in diffusion prediction, especially the PA method which is based on details
about the evolution of the pair node states.

8
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Figure 7. The effect of β on prediction accuracy of MAE. SA or SA∗ significantly outperforms DMP, QMF and PA on most BA
networks regardless of β, while SA∗ illustrates a non-significant improvement compared to other methods. The MAE is
represented as the polar axis of these radar plots. The area demonstrates the prediction error of the corresponding method, and a
larger area means worse performance. (b) and (c) show the same MAE of DMP and PA methods.

Although we have tried to access the characteristics of hierarchical structure embedded in the nodal or
network spindle, more thorough analyses are required to reveal the correlation and high-order topology
described by the spindle vector. In line with the statistical analysis, the application of hierarchical structure
on network dynamics will support a brand-new view of mesoscopic structure on network functionality. In
addition, the extension of the hierarchical structure to high-order networks modeled by hypergraph and
simplicial complex may also be beneficial. The study is limited to SI epidemic-like processes on several
synthetic and empirical networks, supporting the significant outperformance on propagation prediction of
SA∗ on BA networks. However, understanding the propagation dynamics from the perspective of
hierarchical structure may require the construction of hybrid diffusion models. Analyzing the epidemic
thresholds of SIS and SIR model based on the hierarchical structure will be the work at the corner.

4. Data andmethods

4.1. Dataset
Synthetic networks.We choose generative network models that are common and reflect several topological
properties of real-world networks (summarized in appendix C table C1).

Small-world networks (WS) [44].WSmodel explains the coexistence of a high clustering coefficient and a
short distance (small-world behavior) by rewiring links with probability pWS

r in a ring lattice with
non-overlap connections to K nearest neighbors for each node. This construction allows us to tune the graph
between a symmetric state with long distances (pWS

r = 0) and a disordered state with short distances
(pWS

r = 1).
Scale-free networks (BA) [45]. BA is a model that generates random scale-free networks using a

preferential attachment mechanism. It aims to explain the existence of highly heterogenous degree
distribution in real networks. It generates a graph by attaching new nodes along withm edges which are
attached to existing nodes in proportion to their degree.

Scale-free networks with adjustable clustering coefficients (PLC) [46]. PLC model can diversify average
clustering in scale-free BA networks with an extra step that the new node will be linked to a random
neighbor of the connected with probability pBA∆ to form triangles. The model takes (m− 1)pBA∆ as the
parameter to control clusters. This construction improves BA networks in the sense that it enables a higher
average clustering to be attained if desired.

9
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Real-world networks.We use 10 empirical networks with different characteristics to testify the performance
of the proposed method. The self-loops, directionality, and edge weights are all removed, and we only
consider the giant connected components of the networks. The topological features of these empirical
networks are summarized in appendix C table C2. Note that N,M, D, ⟨k⟩, Λ, C, Q respectively denote the
number of vertices and links, the diameter, the average degree, the distance, average clustering coefficient and
modularity.

4.2. SA on network diffusion
We let G= (V,E) denote an undirected and unweighted graph. Here V is the vertex set and E is the set of
edges (unordered pairs of vertices). Furthermore, N denotes the number of nodes andM the number of
edges. We consider the spread of epidemics on G described by SI model with a single source j. Since we are

interested in the relationship between nodal spindle vector
⃗
Sjp and the fraction of infection Ij, we turn to the

probability of a randomly chosen individual in layer i being infected at time t. The proposed method
separates nodes according to nodal spindle layers from j, which can be regarded as a standard
metapopulation model [47] where vertices belonging to the same layer are gathered as a subpopulation with
heterogeneous connections and subpopulations are connected in the spindle structure.

A susceptible vertex k in layer i remains susceptible until time t if t is numerically smaller than i, which
means that no infection has been traversed to layer i since the transmission occurs once each time along the
spindle. Supposing that neighbors of k are independent, the probability of getting infected by its dk(t)
infectious neighbors at time t is thus

ϕ k (t) = 1− (1−β)
dk(t) . (6)

Extending the definition to the case of spindle layers, infectious neighbors of k at time t are comprised of
those in the preceding layer d−k (t), the same layer dok(t), and the following layer d+k (t), yielding

dk (t) = d−k (t)+ dok (t)+ d+k (t) . (7)

Connections between layer i and i− 1 will be traversed twice when we focus on layer i and i− 1
respectively, causing repeated infections that could be compensated by ignoring d+k (t) for each vertex.

Therefore, the number of infected individuals in layer i at time t, F j
i (t), is determined by connections to

infection in the preceding layer i− 1 and the identical layer i at time t− 1. Since the contagious item cannot
reach vertices in layer i when i> t, F j

i (t) evolves like

dF j
i (t)

dt
=
∑
k∈Θi

(1− ρtk)
[
1− (1−β)

d−k (t)+dok(t)
]
, i ⩽ t (8)

whereΘi is the assembly of vertices in layer i and 1− ρtk is the probability of k being in the susceptible state at
time t.

Furthermore, we assume that the infected probability of susceptible nodes at time t within the same layer
i are identical and equal to the fraction of infectious vertices in layer i:

ρtk ≈ pti = F j
i (t)/n

j
i

(
n j
i ∈

⃗
Sjp

)
. (9)

Infectious neighbors of vertex k can be respectively estimated as

d−k (t)≈ k−k p
t
i−1 (10)

dok (t)≈ k0kp
t
i (11)

where k−k , k
o
k correspond to the in-layer and mid-layer degree of vertex k. So far, the SA method can be

summarized as

dF j
i (t)

dt
=
∑
k∈Θi

(1− pti)
[
1− (1−β)

k−k pti−1+k0kp
t
i

]
, i ⩽ t (12)

and the total infections at time t is

ISAj (t) =
Lmax∑
i=0

F j
i (t) (13)

where Lmax is the total number of layers.

10
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4.3. The simplified SA∗ on network diffusion
The prediction of SA method requires information about the in-layer and mid-layer degree of each node,
which may induce the complexity of the method. Therefore, we simplify it by mean-field theory to an
approximation theory called SA∗. Specifically, we assume that the in-layer and mid-layer degree of nodes
within the same layer i are identical and equal to the average connections of each node:

k−k = E−i /ni,k
o
k = Eoi /ni,k ∈Θi (14)

where E−i , E
o
i represent connections between layer i− 1 and i, and those within layer i. Therefore, SA∗ can be

expressed as

dF j
i (t)

dt
= ni (1− pti)

[
1− (1−β)(

E−i pti−1+Eoi p
t
i)/ni

]
, i ⩽ t (15)

Here, ni is the number of nodes in layer i originating from node j, (1− pti) is the probability of a node, in

layer i, being in the susceptible state at time t, and 1− (1−β)(E
−
i pti−1+Eoi p

t
i)/ni is the probability that a node

will be infected by its neighbors, where (E−i p
t
i−1 + Eoi p

t
i)/ni represents the infected neighbors. The total

infections are denoted as:

ISA
∗

j (t) =
Lmax∑
i=0

F j
i (t) (16)

4.4. Discrete version of QMFmethod on network diffusion
As for the SI epidemic dynamics approximated by QMF, an infected node tries to transmit the disease to its
neighbors with probability β per unit time. This forms a Markov chain where the probability of a node being
infected depends only on the last time step. Specifically, the susceptible node i is infected at time t by at least a
neighbor with probability (1− qi(t))(1− pi(t)), then the discrete-time version of the evolution of the
probability of infection of any node i reads

pi (t+ 1) = (1− qi (t))(1− pi (t))+ pi (t) (17)

where pi (t) is the probability that node i is infected at time t, qi (t) is the probability of node i not being
infected by any neighbor

qi (t) =
∏N

j=1

(
1−βajipj (t)

)
(18)

where aji represents the adjacent relationship between node j and i. If they are connected, aji = 1, otherwise,
aji = 0. The fraction of infection at time t can be expressed as

IQMF
j (t) =

N∑
k=1

pk (t)/N (19)

4.5. Discrete version of DMPmethod on network diffusion
In the DMP approach, a node designated as being in a ‘cavity’ state is precluded from transmitting an
infection to its adjacent nodes, while still remaining susceptible to infection from them. This framework
inherently incorporates dynamic correlations among the states of neighboring nodes. The temporal evolution
of the probability that a given node i remains susceptible at time t, denoted as piS (t), is articulated as

piS (t) = piS (0)
∏
j∈Φ i

θj→i (t). (20)

Here,θj→i(t) symbolizes the probability that the disease has not traversed through the edge j → i up to time
t; Φ i signifies the set neighbors of node i. The updating rule for θj→i(t) is given by

θj→i (t) = θj→i (t− 1)−βϕ j→i (t− 1) (21)

where ϕ j→i(t) is the probability that the disease has not been transmitted through the edge j → i up to time t
and node j is infected at time t. The update mechanism for ϕ j→i(t) is as follows

ϕ j→i (t) = (1−β)ϕ j→i (t− 1)+
(
pj\iS (t− 1)− pj\iS (t)

)
. (22)

11
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In this expression, pi\kS (t) represents the probability that node i remains susceptible upon disregarding any
infection originating from its neighbor node k. The right-hand side of (22) delineates two distinct scenarios:
the first term describes the situation where node j infects node i with a rate β at time t if it is infected at time
t− 1; the second term reflects the probability of node j being infected given it was susceptible at time t− 1.

By excluding node k from Φ i in (20), the following is obtained

pi\kS (t) = piS (0)
∏

j∈Φ i\k

θj→i (t) . (23)

To complete the recursion updating rules, the initial conditions are set as:

θj→i (0) = 1,ϕ j→i (0) = δ0j . (24)

Here, δ0j indicates the initial status of node j. If it is infectious, δ
0
j = 1, otherwise, δ0j = 0. The fraction of

infection at time t within the DMP framework is computed as

IDMP
j (t) =

N∑
k=1

(
1− pkS (t)

)
. (25)

4.6. Discrete version of PAmethod on network diffusion
In the PA approach, the focal point is the intricate interplay of joint and conditional probabilities associated
with each link, formulated through epidemic link equations. For a given link connecting nodes i and j, the
probability of node i remaining in a susceptible state is expressed as

PSi = PSSij + PSIij . (26)

Here, PSSij represents the joint probability that both node i and node j are susceptible, while PSIij signifies the
joint probability of node i being susceptible and node j being infected. In a similar fashion, the probability of
node i being infected is deduced as PIi = PIIij + PISij . Integrating these restrictions, the equations for each node i
can be succinctly formulated as

PIi (t+ 1) =
(
1− PIi (t)

)
(1− qi (t))+ PIi (t) . (27)

In this context, qi (t) delineates the probability of node i evading infection through any pairwise interaction
with its neighbors, defined as

qi (t) =
∏
j∈Φi

(
1−β

PSIij (t)

PSi (t)

)
. (28)

To fully capture the dynamics of the system, L additional equations are required, each corresponding to a
specific link. These equations account for the probability of a link connecting two nodes in the infected state
II, transitioning from one of the four potential states: SS, SI, IS, II. Thus, we have

PIIij (t+ 1) = PSSij (t)
(
1− qij (t)

)(
1− qji (t)

)
(29a)

+ PSIij (t)
(
1− (1−β)qij (t)

)
(29b)

+ PISij (t)
(
1− (1−β)qji (t)

)
(29c)

+ PIIij (t) . (29d)

Here, qij(t) specifies the probability of node i not being infected by any neighboring node other than j
through a link

qij (t) =
∏

r∈Φi,r̸=j

(
1−β

PSIir (t)

PSi (t)

)
. (30)

Finally, the fraction of infection at time t, as predicted by the PA approach, is determined by

IPAj (t) =
N∑

k=1

PkI (t) . (31)

12
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4.7. Evaluationmetrics
The prediction error of epidemic propagation originating from node j through the SA method can be
quantified by the MAE as follows

MAEjSA =
1

m

m∑
t=1

|ISAj (t)− IMC
j (t) | (32)

where IMC
j (t) is the fraction of infection at time t under Monte Carlo simulation,m is the maximum length

of ISAj and IMC
j . In this work, we focus on the overall performance of approximating methods on different

types of networks by averaging the MAE over several infection sources

MAESA =
1

s

s∑
j=1

MAEjSA (33)

where s represents the number of experiments on networks, i.e. the number of independently chosen
infection sources. The calculation of 32 and 33 also applies to QMF, DMP, PA and SA∗ when different
approximation methods are used, respectively.
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Appendix A. Tables for the performance of SA and SA∗ on synthetic and empirical
networks

Table A1. Performance of SA, SA∗ and other methods on BA networks.

N m M C Λ Q Qua Pen

MAEPA
(Mean95%CI)

MAEDMP

Mean(95%CI)
MAEQMF

Mean(95%CI)
MAESA
Mean(95%CI)

MAESA∗
Mean(95%CI)

1000 2 1996 0.032 4.096 0.523 729 1735 0.029
(0.026,0.032)

0.029
(0.026,0.032)

0.045
(0.042,0.049)

0.037
(0.034,0.04)

0.026
(0.023,0.029)

1000 3 2991 0.036 3.481 0.392 3241 5811 0.022
(0.019,0.025)

0.022
(0.019,0.025)

0.030
(0.027,0.033)

0.025
(0.021,0.028)

0.015
(0.013,0.018)

1000 4 3984 0.033 3.200 0.326 7937 9196 0.018
(0.015,0.02)

0.018
(0.015,0.02)

0.022
(0.02,0.024)

0.019
(0.016,0.021)

0.011
(0.009,0.013)

1000 5 4975 0.038 2.980 0.274 13 804 9754 0.015
(0.013,0.017)

0.015
(0.013,0.017)

0.018
(0.016,0.02)

0.015
(0.013,0.017)

0.010
(0.008,0.011)

1500 2 2996 0.019 4.297 0.528 930 2446 0.029
(0.026,0.032)

0.029
(0.026,0.032)

0.047
(0.044,0.05)

0.037
(0.034,0.04)

0.026
(0.023,0.029)

1500 3 4491 0.027 3.634 0.394 4425 9039 0.022
(0.02,0.025)

0.022
(0.02,0.025)

0.030
(0.027,0.033)

0.022
(0.02,0.025)

0.013
(0.011,0.016)

1500 4 5984 0.027 3.317 0.328 10 768 15 687 0.018
(0.016,0.02)

0.018
(0.016,0.02)

0.022
(0.02,0.025)

0.017
(0.015,0.019)

0.010
(0.009,0.012)

1500 5 7475 0.032 3.107 0.276 18 933 19 282 0.017
(0.015,0.019)

0.017
(0.015,0.019)

0.020
(0.017,0.022)

0.016
(0.013,0.018)

0.010
(0.008,0.012)

2000 2 3996 0.014 4.426 0.529 1111 3147 0.030
(0.027,0.032)

0.030
(0.027,0.032)

0.048
(0.045,0.051)

0.037
(0.034,0.04)

0.026
(0.023,0.028)

2000 3 5991 0.021 3.716 0.389 5338 12 515 0.023
(0.021,0.026)

0.023
(0.021,0.026)

0.031
(0.029,0.034)

0.023
(0.02,0.026)

0.014
(0.012,0.015)

2000 4 7984 0.021 3.411 0.325 12 801 22 935 0.019
(0.017,0.021)

0.019
(0.017,0.021)

0.024
(0.021,0.026)

0.018
(0.016,0.021)

0.011
(0.01,0.013)

2000 5 9975 0.027 3.186 0.284 23 917 29 113 0.017
(0.015,0.019)

0.017
(0.015,0.019)

0.020
(0.018,0.022)

0.016
(0.014,0.018)

0.010
(0.009,0.012)

2500 2 4996 0.014 4.496 0.530 1274 3757 0.030
(0.027,0.033)

0.030
(0.027,0.033)

0.048
(0.045,0.051)

0.037
(0.033,0.04)

0.026
(0.023,0.029)

2500 3 7491 0.019 3.796 0.397 6078 15 388 0.024
(0.021,0.027)

0.024
(0.021,0.027)

0.032
(0.029,0.035)

0.023
(0.02,0.026)

0.015
(0.013,0.017)

2500 4 9984 0.018 3.482 0.327 14 815 29 478 0.021
(0.019,0.023)

0.021
(0.019,0.023)

0.026
(0.024,0.029)

0.019
(0.017,0.022)

0.011
(0.01,0.013)

2500 5 12 475 0.023 3.248 0.283 28 164 40 615 0.016
(0.014,0.018)

0.016
(0.014,0.018)

0.019
(0.017,0.021)

0.013
(0.011,0.016)

0.010
(0.009,0.012)

3000 2 5996 0.012 4.567 0.531 1432 4382 0.033
(0.03,0.036)

0.033
(0.03,0.036)

0.051
(0.048,0.054)

0.038
(0.035,0.042)

0.027
(0.025,0.031)

3000 3 8991 0.016 3.860 0.396 6789 18 186 0.025
(0.022,0.027)

0.025
(0.022,0.027)

0.033
(0.03,0.036)

0.023
(0.02,0.026)

0.014
(0.012,0.016)

3000 4 11 984 0.017 3.544 0.324 16 237 36 473 0.020
(0.017,0.023)

0.020
(0.017,0.023)

0.025
(0.022,0.028)

0.018
(0.015,0.021)

0.013
(0.011,0.015)

3000 5 14 975 0.021 3.304 0.282 31 779 52 665 0.018
(0.016,0.019)

0.018
(0.016,0.019)

0.021
(0.019,0.023)

0.015
(0.013,0.016)

0.009
(0.008,0.01)

Note: The 95% Confidence Interval (CI) on the mean is calculated through the 100 infection sources.
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Table A2. Performance of SA, SA∗ and other methods on WS networks.

N m p M C Λ Q Qua Pen

MAEPA
Mean(95%CI)

MAEDMP

Mean(95%CI)

MAEQMF

Mean(95%CI)

MAESA
Mean(95%CI)

MAESA∗

Mean(95%CI)

1000 4 0.01 2000 0.479 23.483 0.889 30 4 0.146

(0.135,0.157)

0.104

(0.101,0.107)

0.129

(0.126,0.132)

0.166

(0.162,0.17)

0.162

(0.158,0.166)

1000 4 0.05 2000 0.423 11.039 0.886 103 3 0.083

(0.081,0.085)

0.083

(0.081,0.085)

0.123

(0.12,0.125)

0.152

(0.149,0.155)

0.146

(0.143,0.148)

1000 4 0.1 2000 0.368 8.659 0.848 181 22 0.068

(0.066,0.07)

0.068

(0.066,0.07)

0.113

(0.111,0.115)

0.136

(0.133,0.138)

0.127

(0.125,0.129)

1000 4 0.5 2000 0.071 5.6 0.584 154 133 0.018

(0.016,0.02)

0.018

(0.016,0.02)

0.068

(0.066,0.07)

0.068

(0.066,0.07)

0.057

(0.055,0.059)

1000 4 0.9 2000 0.002 5.335 0.527 64 214 0.013

(0.012,0.015)

0.013

(0.012,0.015)

0.062

(0.06,0.065)

0.058

(0.056,0.06)

0.048

(0.046,0.05)

1000 6 0.01 3000 0.577 14.684 0.767 9 0 0.094

(0.092,0.096)

0.094

(0.092,0.096)

0.106

(0.104,0.108)

0.151

(0.148,0.153)

0.147

(0.145,0.15)

1000 6 0.05 3000 0.507 7.402 0.768 48 22 0.075

(0.073,0.076)

0.075

(0.073,0.076)

0.094

(0.093,0.096)

0.129

(0.127,0.131)

0.121

(0.119,0.123)

1000 6 0.1 3000 0.444 6.163 0.762 119 49 0.059

(0.057,0.061)

0.059

(0.057,0.061)

0.08

(0.079,0.082)

0.107

(0.105,0.109)

0.096

(0.094,0.098)

1000 6 0.5 3000 0.088 4.283 0.494 622 949 0.016

(0.014,0.018)

0.016

(0.014,0.018)

0.04

(0.038,0.042)

0.031

(0.029,0.033)

0.021

(0.02,0.022)

1000 6 0.9 3000 0.006 4.104 0.39 411 1988 0.012

(0.011,0.013)

0.012

(0.011,0.013)

0.037

(0.035,0.039)

0.024

(0.023,0.025)

0.018

(0.017,0.018)

1000 8 0.01 4000 0.619 10.452 0.713 0 0 0.088

(0.086,0.09)

0.088

(0.086,0.09)

0.096

(0.094,0.098)

0.145

(0.143,0.147)

0.144

(0.141,0.146)

1000 8 0.05 4000 0.542 5.912 0.717 18 74 0.064

(0.062,0.065)

0.064

(0.062,0.065)

0.075

(0.074,0.077)

0.111

(0.109,0.113)

0.104

(0.102,0.106)

1000 8 0.1 4000 0.475 5.069 0.705 133 169 0.049

(0.048,0.051)

0.049

(0.048,0.051)

0.062

(0.06,0.063)

0.089

(0.087,0.09)

0.078

(0.076,0.08)

1000 8 0.5 4000 0.091 3.706 0.437 1592 3374 0.014

(0.013,0.016)

0.014

(0.013,0.016)

0.029

(0.027,0.03)

0.02

(0.019,0.021)

0.015

(0.015,0.016)

1000 8 0.9 4000 0.009 3.571 0.323 1416 6990 0.01

(0.009,0.012)

0.01

(0.009,0.012)

0.025

(0.023,0.026)

0.015

(0.014,0.016)

0.016

(0.015,0.016)

1000 10 0.01 5000 0.643 8.385 0.682 0 2 0.085

(0.083,0.087)

0.085

(0.083,0.087)

0.09

(0.088,0.092)

0.142

(0.139,0.144)

0.143

(0.14,0.145)

1000 10 0.05 5000 0.564 5.09 0.654 33 226 0.059

(0.058,0.061)

0.059

(0.058,0.061)

0.067

(0.066,0.069)

0.105

(0.103,0.107)

0.1

(0.098,0.102)

1000 10 0.1 5000 0.493 4.452 0.636 152 528 0.044

(0.043,0.045)

0.044

(0.043,0.045)

0.052

(0.051,0.053)

0.079

(0.077,0.081)

0.067

(0.065,0.068)

1000 10 0.5 5000 0.094 3.384 0.394 3053 6893 0.012

(0.011,0.013)

0.012

(0.011,0.013)

0.021

(0.02,0.022)

0.015

(0.014,0.016)

0.016

(0.015,0.016)

1000 10 0.9 5000 0.009 3.27 0.279 3659 15 162 0.01

(0.009,0.011)

0.01

(0.009,0.011)

0.019

(0.018,0.021)

0.013

(0.012,0.013)

0.017

(0.017,0.017)

1500 4 0.01 3000 0.48 26.681 0.904 44 3 0.186

(0.175,0.197)

0.12

(0.118,0.122)

0.148

(0.146,0.15)

0.189

(0.186,0.192)

0.185

(0.182,0.189)

1500 4 0.05 3000 0.427 12.081 0.897 150 8 0.085

(0.083,0.088)

0.085

(0.083,0.088)

0.125

(0.123,0.128)

0.156

(0.153,0.159)

0.149

(0.146,0.152)

1500 4 0.1 3000 0.367 9.327 0.858 271 19 0.071

(0.069,0.073)

0.071

(0.069,0.073)

0.119

(0.117,0.121)

0.143

(0.141,0.146)

0.135

(0.132,0.137)

1500 4 0.5 3000 0.065 5.933 0.588 214 191 0.02

(0.018,0.022)

0.02

(0.018,0.022)

0.073

(0.071,0.075)

0.073

(0.071,0.076)

0.063

(0.06,0.065)

1500 4 0.9 3000 0.001 5.638 0.524 84 259 0.013

(0.012,0.015)

0.013

(0.012,0.015)

0.065

(0.063,0.067)

0.061

(0.059,0.064)

0.051

(0.049,0.054)

1500 6 0.01 4500 0.578 16.472 0.784 5 14 0.102

(0.099,0.104)

0.102

(0.099,0.104)

0.114

(0.111,0.117)

0.161

(0.158,0.165)

0.158

(0.155,0.162)

1500 6 0.05 4500 0.508 8.095 0.792 68 28 0.075

(0.073,0.077)

0.075

(0.073,0.077)

0.094

(0.092,0.096)

0.129

(0.126,0.131)

0.121

(0.118,0.124)

1500 6 0.1 4500 0.444 6.558 0.763 167 41 0.062

(0.061,0.064)

0.062

(0.061,0.064)

0.085

(0.084,0.087)

0.113

(0.111,0.115)

0.102

(0.1,0.104)

1500 6 0.5 4500 0.079 4.529 0.502 896 1248 0.017

(0.015,0.018)

0.017

(0.015,0.018)

0.044

(0.042,0.046)

0.034

(0.033,0.036)

0.023

(0.022,0.024)

1500 6 0.9 4500 0.005 4.349 0.389 520 2107 0.012

(0.011,0.014)

0.012

(0.011,0.014)

0.039

(0.037,0.041)

0.026

(0.025,0.028)

0.019

(0.018,0.02)

1500 8 0.01 6000 0.62 11.868 0.7 6 18 0.091

(0.089,0.093)

0.091

(0.089,0.093)

0.098

(0.096,0.1)

0.146

(0.144,0.149)

0.145

(0.142,0.147)

1500 8 0.05 6000 0.547 6.453 0.705 36 42 0.069

(0.067,0.071)

0.069

(0.067,0.071)

0.081

(0.08,0.083)

0.12

(0.118,0.122)

0.114

(0.111,0.116)

1500 8 0.1 6000 0.476 5.421 0.723 102 152 0.056

(0.054,0.057)

0.056

(0.054,0.057)

0.069

(0.068,0.071)

0.099

(0.097,0.1)

0.088

(0.085,0.09)

1500 8 0.5 6000 0.087 3.924 0.444 2032 3940 0.014

(0.013,0.016)

0.014

(0.013,0.016)

0.03

(0.029,0.032)

0.021

(0.02,0.023)

0.016

(0.016,0.017)

(Continued.)
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Table A2. (Continued.)

N m p M C Λ Q Qua Pen

MAEPA
Mean(95%CI)

MAEDMP

Mean(95%CI)

MAEQMF

Mean(95%CI)

MAESA
Mean(95%CI)

MAESA∗

Mean(95%CI)

1500 8 0.9 6000 0.007 3.771 0.313 1423 8278 0.01

(0.009,0.011)

0.01

(0.009,0.011)

0.026

(0.024,0.027)

0.016

(0.015,0.017)

0.016

(0.016,0.017)

1500 10 0.01 7500 0.643 9.369 0.661 5 21 0.084

(0.082,0.086)

0.084

(0.082,0.086)

0.089

(0.087,0.091)

0.14

(0.137,0.143)

0.141

(0.138,0.143)

1500 10 0.05 7500 0.567 5.459 0.673 18 136 0.062

(0.06,0.063)

0.062

(0.06,0.063)

0.07

(0.069,0.072)

0.109

(0.108,0.111)

0.104

(0.102,0.106)

1500 10 0.1 7500 0.491 4.725 0.671 122 411 0.047

(0.045,0.048)

0.047

(0.045,0.048)

0.056

(0.054,0.057)

0.084

(0.083,0.086)

0.071

(0.069,0.072)

1500 10 0.5 7500 0.09 3.57 0.398 3564 8605 0.011

(0.01,0.012)

0.011

(0.01,0.012)

0.021

(0.02,0.023)

0.016

(0.015,0.017)

0.015

(0.015,0.016)

1500 10 0.9 7500 0.007 3.455 0.28 3815 19 350 0.009

(0.008,0.01)

0.009

(0.008,0.01)

0.019

(0.018,0.021)

0.013

(0.013,0.014)

0.018

(0.018,0.018)

2000 4 0.01 4000 0.481 29.928 0.935 56 3 0.212

(0.202,0.222)

0.124

(0.121,0.127)

0.152

(0.149,0.155)

0.195

(0.19,0.199)

0.191

(0.186,0.195)

2000 4 0.05 4000 0.423 12.761 0.902 229 21 0.093

(0.09,0.095)

0.093

(0.09,0.095)

0.134

(0.132,0.136)

0.167

(0.164,0.169)

0.16

(0.157,0.163)

2000 4 0.1 4000 0.371 9.924 0.865 326 32 0.075

(0.073,0.077)

0.075

(0.073,0.077)

0.123

(0.121,0.125)

0.149

(0.146,0.151)

0.14

(0.138,0.143)

2000 4 0.5 4000 0.077 6.228 0.597 274 160 0.019

(0.017,0.021)

0.019

(0.017,0.021)

0.076

(0.074,0.077)

0.077

(0.075,0.079)

0.066

(0.064,0.068)

2000 4 0.9 4000 0.003 5.882 0.526 40 203 0.015

(0.013,0.016)

0.015

(0.013,0.016)

0.07

(0.068,0.072)

0.066

(0.064,0.068)

0.056

(0.054,0.058)

2000 6 0.01 6000 0.579 17.576 0.803 5 0 0.109

(0.107,0.111)

0.109

(0.107,0.111)

0.122

(0.12,0.124)

0.173

(0.17,0.175)

0.169

(0.167,0.172)

2000 6 0.05 6000 0.51 8.646 0.782 91 18 0.081

(0.079,0.082)

0.081

(0.079,0.082)

0.101

(0.099,0.103)

0.139

(0.137,0.141)

0.131

(0.129,0.133)

2000 6 0.1 6000 0.445 6.947 0.758 216 60 0.067

(0.065,0.069)

0.067

(0.065,0.069)

0.09

(0.089,0.092)

0.119

(0.118,0.121)

0.109

(0.107,0.11)

2000 6 0.5 6000 0.087 4.721 0.505 1005 1181 0.017

(0.016,0.019)

0.017

(0.016,0.019)

0.046

(0.045,0.048)

0.037

(0.035,0.039)

0.025

(0.023,0.026)

2000 6 0.9 6000 0.003 4.512 0.39 466 2174 0.012

(0.011,0.013)

0.012

(0.011,0.013)

0.041

(0.039,0.043)

0.028

(0.026,0.029)

0.02

(0.019,0.021)

2000 8 0.01 8000 0.621 12.595 0.725 0 4 0.101

(0.099,0.103)

0.101

(0.099,0.103)

0.109

(0.107,0.11)

0.163

(0.161,0.165)

0.161

(0.159,0.164)

2000 8 0.05 8000 0.546 6.718 0.72 22 33 0.072

(0.07,0.073)

0.072

(0.07,0.073)

0.085

(0.083,0.086)

0.125

(0.123,0.127)

0.117

(0.115,0.119)

2000 8 0.1 8000 0.471 5.628 0.717 145 192 0.057

(0.055,0.058)

0.057

(0.055,0.058)

0.071

(0.07,0.072)

0.101

(0.099,0.102)

0.089

(0.087,0.091)

2000 8 0.5 8000 0.086 4.079 0.438 2318 4278 0.014

(0.013,0.016)

0.014

(0.013,0.016)

0.032

(0.031,0.033)

0.023

(0.022,0.024)

0.017

(0.017,0.018)

2000 8 0.9 8000 0.004 3.913 0.316 1589 8848 0.009

(0.008,0.01)

0.009

(0.008,0.01)

0.026

(0.024,0.027)

0.016

(0.015,0.017)

0.017

(0.017,0.017)

2000 10 0.01 10 000 0.644 9.994 0.69 4 0 0.097

(0.096,0.099)

0.098

(0.096,0.099)

0.103

(0.102,0.105)

0.16

(0.158,0.163)

0.161

(0.159,0.164)

2000 10 0.05 10 000 0.565 5.76 0.676 13 157 0.066

(0.065,0.068)

0.066

(0.065,0.068)

0.075

(0.074,0.077)

0.116

(0.114,0.118)

0.111

(0.109,0.113)

2000 10 0.1 10 000 0.488 4.915 0.673 107 385 0.049

(0.048,0.051)

0.049

(0.048,0.051)

0.059

(0.057,0.06)

0.088

(0.087,0.09)

0.074

(0.072,0.076)

2000 10 0.5 10 000 0.091 3.702 0.408 4051 10 198 0.013

(0.012,0.014)

0.013

(0.012,0.014)

0.024

(0.022,0.025)

0.017

(0.017,0.018)

0.016

(0.015,0.016)

2000 10 0.9 10 000 0.006 3.574 0.275 3807 23 139 0.008

(0.007,0.009)

0.008

(0.007,0.009)

0.018

(0.017,0.02)

0.013

(0.013,0.014)

0.018

(0.018,0.019)

2500 4 0.01 5000 0.482 30.573 0.938 71 0 0.221

(0.209,0.234)

0.124

(0.122,0.126)

0.151

(0.149,0.154)

0.192

(0.189,0.196)

0.189

(0.185,0.192)

2500 4 0.05 5000 0.427 13.573 0.911 260 18 0.098

(0.096,0.1)

0.098

(0.096,0.1)

0.141

(0.139,0.143)

0.175

(0.173,0.178)

0.169

(0.166,0.171)

2500 4 0.1 5000 0.373 10.382 0.873 417 46 0.081

(0.079,0.083)

0.081

(0.079,0.083)

0.131

(0.129,0.133)

0.159

(0.157,0.161)

0.15

(0.149,0.152)

2500 4 0.5 5000 0.067 6.428 0.597 406 216 0.021

(0.019,0.023)

0.021

(0.019,0.023)

0.08

(0.078,0.082)

0.082

(0.08,0.084)

0.07

(0.068,0.073)

2500 4 0.9 5000 0.001 6.086 0.529 52 224 0.013

(0.011,0.015)

0.013

(0.011,0.015)

0.071

(0.069,0.073)

0.068

(0.066,0.07)

0.058

(0.056,0.06)

2500 6 0.01 7500 0.579 18.221 0.786 8 0 0.111

(0.109,0.112)

0.111

(0.109,0.112)

0.123

(0.121,0.125)

0.173

(0.17,0.175)

0.169

(0.167,0.172)

2500 6 0.05 7500 0.511 8.809 0.796 94 14 0.086

(0.084,0.088)

0.086

(0.084,0.088)

0.108

(0.106,0.109)

0.147

(0.145,0.149)

0.139

(0.137,0.141)

2500 6 0.1 7500 0.445 7.216 0.787 299 39 0.069

(0.067,0.071)

0.069

(0.067,0.071)

0.093

(0.091,0.095)

0.123

(0.121,0.125)

0.112

(0.11,0.114)

(Continued.)
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Table A2. (Continued.)

2500 6 0.5 7500 0.08 4.86 0.5 1473 1440 0.017

(0.015,0.018)

0.017

(0.015,0.018)

0.046

(0.045,0.048)

0.037

(0.036,0.039)

0.025

(0.024,0.026)

2500 6 0.9 7500 0.002 4.644 0.389 379 2314 0.01

(0.009,0.012)

0.01

(0.009,0.012)

0.04

(0.039,0.042)

0.027

(0.026,0.028)

0.02

(0.019,0.021)

2500 8 0.01 10 000 0.622 13.026 0.726 0 0 0.1

(0.099,0.102)

0.1

(0.099,0.102)

0.108

(0.107,0.11)

0.162

(0.16,0.164)

0.161

(0.159,0.163)

2500 8 0.05 10 000 0.546 6.949 0.732 36 60 0.076

(0.075,0.078)

0.076

(0.075,0.078)

0.09

(0.088,0.091)

0.131

(0.129,0.133)

0.124

(0.122,0.126)

2500 8 0.1 10 000 0.474 5.836 0.735 123 205 0.059

(0.057,0.06)

0.059

(0.057,0.06)

0.073

(0.072,0.075)

0.104

(0.102,0.105)

0.092

(0.09,0.094)

2500 8 0.5 10 000 0.085 4.202 0.446 2851 4283 0.015

(0.013,0.016)

0.015

(0.013,0.016)

0.033

(0.031,0.034)

0.024

(0.022,0.025)

0.018

(0.017,0.018)

2500 8 0.9 10 000 0.003 4.026 0.315 1447 9278 0.009

(0.008,0.011)

0.009

(0.008,0.011)

0.027

(0.026,0.029)

0.017

(0.016,0.018)

0.017

(0.017,0.017)

2500 10 0.01 12 500 0.645 10.439 0.678 0 0 0.094

(0.093,0.096)

0.094

(0.093,0.096)

0.1

(0.098,0.102)

0.155

(0.152,0.157)

0.155

(0.153,0.158)

2500 10 0.05 12 500 0.566 5.951 0.688 68 134 0.068

(0.067,0.07)

0.068

(0.067,0.07)

0.077

(0.076,0.079)

0.119

(0.117,0.12)

0.113

(0.112,0.115)

2500 10 0.1 12 500 0.492 5.106 0.674 131 521 0.052

(0.05,0.053)

0.052

(0.05,0.053)

0.061

(0.06,0.063)

0.093

(0.091,0.095)

0.08

(0.078,0.082)

2500 10 0.5 12 500 0.091 3.805 0.404 4637 11 201 0.011

(0.01,0.013)

0.011

(0.01,0.013)

0.023

(0.022,0.024)

0.017

(0.016,0.018)

0.016

(0.016,0.016)

2500 10 0.9 12 500 0.004 3.665 0.271 3744 25 593 0.008

(0.007,0.009)

0.008

(0.007,0.009)

0.02

(0.019,0.021)

0.014

(0.014,0.015)

0.018

(0.018,0.019)

3000 4 0.01 6000 0.483 34.807 0.945 76 7 0.257

(0.249,0.266)

0.133

(0.131,0.136)

0.162

(0.159,0.164)

0.206

(0.203,0.209)

0.202

(0.199,0.205)

3000 4 0.05 6000 0.427 14.085 0.914 307 25 0.089

(0.087,0.092)

0.089

(0.087,0.092)

0.128

(0.124,0.131)

0.159

(0.154,0.163)

0.153

(0.149,0.157)

3000 4 0.1 6000 0.372 10.66 0.875 514 41 0.08

(0.078,0.082)

0.08

(0.078,0.082)

0.13

(0.128,0.132)

0.158

(0.156,0.161)

0.15

(0.148,0.152)

3000 4 0.5 6000 0.067 6.57 0.594 385 224 0.02

(0.018,0.022)

0.02

(0.018,0.022)

0.08

(0.078,0.082)

0.082

(0.08,0.084)

0.071

(0.069,0.074)

3000 4 0.9 6000 0.001 6.238 0.534 79 288 0.014

(0.012,0.016)

0.014

(0.012,0.016)

0.073

(0.07,0.075)

0.071

(0.068,0.073)

0.061

(0.058,0.063)

3000 6 0.01 9000 0.58 19.799 0.81 11 0 0.115

(0.113,0.117)

0.115

(0.113,0.117)

0.127

(0.125,0.129)

0.18

(0.177,0.182)

0.176

(0.174,0.179)

3000 6 0.05 9000 0.511 9.114 0.802 131 37 0.089

(0.087,0.091)

0.089

(0.087,0.091)

0.11

(0.108,0.112)

0.15

(0.148,0.153)

0.142

(0.14,0.145)

3000 6 0.1 9000 0.442 7.289 0.803 425 44 0.069

(0.068,0.071)

0.069

(0.068,0.071)

0.094

(0.092,0.095)

0.123

(0.122,0.125)

0.112

(0.11,0.114)

3000 6 0.5 9000 0.082 4.978 0.504 1479 1402 0.017

(0.016,0.019)

0.017

(0.016,0.019)

0.048

(0.047,0.05)

0.039

(0.037,0.04)

0.026

(0.025,0.028)

3000 6 0.9 9000 0.002 4.754 0.388 420 2180 0.011

(0.01,0.012)

0.011

(0.01,0.012)

0.042

(0.04,0.044)

0.028

(0.027,0.03)

0.02

(0.02,0.021)

3000 8 0.01 12 000 0.622 13.49 0.731 0 4 0.108

(0.107,0.11)

0.108

(0.107,0.11)

0.117

(0.115,0.118)

0.173

(0.171,0.175)

0.171

(0.169,0.174)

3000 8 0.05 12 000 0.546 7.184 0.726 68 36 0.078

(0.077,0.079)

0.078

(0.077,0.079)

0.091

(0.09,0.093)

0.133

(0.132,0.135)

0.126

(0.124,0.128)

3000 8 0.1 12 000 0.474 5.982 0.74 104 160 0.06

(0.058,0.061)

0.06

(0.058,0.061)

0.075

(0.073,0.076)

0.106

(0.104,0.108)

0.094

(0.092,0.096)

3000 8 0.5 12 000 0.087 4.301 0.448 3167 4601 0.015

(0.013,0.016)

0.015

(0.013,0.016)

0.033

(0.032,0.035)

0.024

(0.023,0.025)

0.018

(0.017,0.018)

3000 8 0.9 12 000 0.003 4.124 0.314 1633 9660 0.01

(0.009,0.011)

0.01

(0.009,0.011)

0.029

(0.027,0.031)

0.018

(0.017,0.019)

0.018

(0.017,0.018)

3000 10 0.01 15 000 0.645 10.623 0.671 0 10 0.101

(0.099,0.102)

0.101

(0.099,0.102)

0.107

(0.105,0.108)

0.164

(0.162,0.166)

0.165

(0.162,0.167)

3000 10 0.05 15 000 0.566 6.092 0.716 10 150 0.069

(0.067,0.07)

0.069

(0.067,0.07)

0.078

(0.077,0.079)

0.12

(0.119,0.121)

0.114

(0.113,0.116)

3000 10 0.1 15 000 0.489 5.217 0.709 131 498 0.054

(0.052,0.055)

0.054

(0.052,0.055)

0.064

(0.062,0.065)

0.096

(0.094,0.097)

0.083

(0.082,0.085)

3000 10 0.5 15 000 0.089 3.893 0.401 5350 11 925 0.012

(0.011,0.013)

0.012

(0.011,0.013)

0.024

(0.023,0.026)

0.018

(0.017,0.019)

0.016

(0.016,0.016)

3000 10 0.9 15 000 0.004 3.744 0.27 3907 26 563 0.008

(0.007,0.01)

0.008

(0.007,0.01)

0.021

(0.019,0.022)

0.014

(0.014,0.015)

0.018

(0.018,0.018)
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Table A3. Performance of SA, SA∗ and other methods on empirical networks.

Networks
MAEPA
Mean(95%CI)

MAEDMP

Mean(95%CI)
MAEQMF

Mean(95%CI)
MAESA
Mean(95%CI)

MAESA∗

Mean(95%CI)

Caenorhabditis 0.017
(0.014,0.021)

0.017
(0.014,0.021)

0.019
(0.015,0.022)

0.022
(0.018,0.025)

0.019
(0.016,0.022)

Ego-facebook 0.038
(0.034,0.042)

0.038
(0.034,0.042)

0.059
(0.054,0.064)

0.034
(0.03,0.038)

0.033
(0.029,0.038)

Iceland 0.029
(0.019,0.039)

0.029
(0.019,0.039)

0.043
(0.031,0.054)

0.046
(0.035,0.056)

0.039
(0.029,0.05)

Interactome_vidal 0.035
(0.03,0.04)

0.035
(0.03,0.04)

0.044
(0.039,0.05)

0.047
(0.042,0.053)

0.046
(0.04,0.051)

Karate 0.021
(0.012,0.029)

0.022
(0.013,0.03)

0.025
(0.015,0.034)

0.033
(0.023,0.044)

0.023
(0.015,0.032)

Metabolic_ana 0.028
(0.023,0.032)

0.028
(0.023,0.032)

0.032
(0.027,0.037)

0.03
(0.026,0.034)

0.029
(0.025,0.033)

Metabolic_blo 0.027
(0.023,0.03)

0.027
(0.023,0.03)

0.031
(0.028,0.035)

0.03
(0.027,0.034)

0.028
(0.025,0.032)

Ugandan 0.011
(0.009,0.013)

0.011
(0.009,0.013)

0.013
(0.011,0.015)

0.018
(0.016,0.02)

0.011
(0.009,0.013)

Windsurfers 0.013
(0.008,0.018)

0.013
(0.008,0.018)

0.012
(0.007,0.017)

0.018
(0.012,0.025)

0.012
(0.007,0.018)

Zebras 0.011
(0.003,0.019)

0.011
(0.003,0.019)

0.012
(0.004,0.02)

0.018
(0.012,0.025)

0.013
(0.009,0.017)

Appendix B. Experiments on scale-free networks with γ > 3

Figure B1. Experiments on scale-free networks with γ > 3. Although all approximations generated larger MAE in these networks,
SA∗ excels QMF and is inferior to PA and DMP which is compatible with the findings on WS networks. (a) represents the
performance of all methods on scale-free networks with γ > 3, i.e. SF1 network with N = 1000, γ= 4.5, SF2 network with N =
1000, γ= 5, SF3 network with N = 1500, γ= 4.5 and SF4 network with N = 1500, γ= 5. (b)–(d) respectively show the temporal
approximation of SI Monte Carlo simulation, the visualization and the degree distribution of SF1 network. The layout is degree
based where nodes are equally distributed on concentric circles, the radius representing the degree centrality. The size and color
denote the degree of nodes. The power law index is calculated under the log-binning of degree distribution. (e), (f) illuminate the
performance on SF2 and SF3 networks. (g)–(i) illustrate the approximation, visualization and degree distribution of SF4 network.
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Appendix C. Tables for statistics of synthetic and empirical networks

Table C1. Overview of synthetic network models.

Networks Size (N) Generating parameters

WS N ∈ (1000,3000,500) K ∈ (4,10,2), pWS
r ∈ [0.01,0.05,0.1,0.5,0.9]

BA N ∈ (1000,3000,500) m ∈ (2,5,1)
PLC 1000 m ∈ (2,4,1), pBA∆ ∈ (0.1,0.9,0.1)

Note: [∗] denotes the list of elements, (a,b,c) represents the range from a to b with increment c.

Table C2. Basic statistics of empirical networks.

Networks N M D ⟨k⟩ Λ C Q

Caenorhabditis 453 2025 7 8.94 2.66 0.65 0.447
Ego-Facebook 2888 2981 9 2.06 3.87 0.8 0.809
Iceland 75 114 6 3.04 3.16 0.61 0.574
Interactome_vidal 2783 6007 13 4.32 4.84 0.07 0.615
Karate 34 77 5 4.53 2.42 0.54 0.381
Metabolic_ana 1314 3552 10 5.41 3.23 0.16 0.496
Metabolic_blo 813 2103 8 5.17 3.32 0.13 0.511
Ugandan 369 1753 5 9.5 2.8 0.08 0.300
Windsurfers 43 336 3 15.63 1.67 0.65 0.258
Zebras 23 105 4 9.13 1.86 0.85 0.203

Appendix D. Proofs for Lemmas of spindle vector

Lemma 1. The total number of layers Lmax is the diameter of networks D, i.e. Lmax = |⃗Sp|= D.

Proof 1. The diameter of networks,D, is denoted as themaximumdistance between any pairs of nodes, i.e.D=
maxij dij. The total number of layers depends on the longest BFS spinning tree, characterizing the length of

network spindle vector, i.e, Lmax = |⃗Sp|=maxij dij. Therefore, Lmax = |⃗Sp|= D.

Lemma 2. S⃗p(0) is the reciprocal of N, i.e. S⃗p(0) = 1/N.

Proof 2. Each root node i is viewed as layer 0 in S⃗ip, then ni0 = 1/N. According to the definition of S⃗p( j),

S⃗p(0) =
∑

i∈Θ(B0)
ni0
N = 1/N because layer 0 is reachable to all vertices.

Lemma 3. S⃗p(1) is a linear functions of ⟨k⟩, specifically, S⃗p(1) = ⟨k⟩/N.

Proof 3. The number of vertices in layer 1 is the degree of each root, then ni1 = ki/N. According to the defin-

ition of S⃗p( j), S⃗p(1) =
∑

i∈Θ(B1)
ni1
N =

∑
i∈Θ(B1)

ki
N2 = ⟨k⟩

N .

Lemma 4. The area under the curve of S⃗p approximates to Λ of networks, i.e.
∑Lmax

j=0 j⃗Sp( j) =
N(N−1)

N2 Λ.

Proof 4. Firstly, Nnij means the number of vertices up to a distance of j away from the root node i, then

N
∑

i∈Θ(Bj)
nij indicates the number of pairs of vertices which are far apart up to a distance of j. Secondly,∑Lmax

j=0( jN
∑

i∈Θ(Bj)
nij) corresponds to the sum of the distance over all connections. Λ is defined as the

average distance over all connections, i.e. Λ =

∑Lmax
j=0 ( jN

∑
i∈Θ(Bj)

nij)

N(N−1) . Finally, for the discrete distribution, the

area under the curve is the integration of S⃗p. According to the definition of S⃗p( j), Λ =
N2∑Lmax

j=0 j⃗Sp( j)

N(N−1) , or∑Lmax

j=0 j⃗Sp( j) =
N(N−1)

N2 Λ.

Lemma 5. On tree networks with Poisson degree distribution, S⃗p(2) can be expressed as S⃗p(2) =
⟨k2⟩−⟨k⟩

N .

Proof 5. In [48], authors denote generating functions for the degree distribution and the excess degree distri-
bution of a network respectively, and explicitly give the generating function for the number of neighbors at any
distance d. Especially, if the degree distribution of the tree network were Poisson with mean c, the mean num-
ber of second neighbors equals the minus between secondmoment and first moment of degree. We extend the

claim in spindle vector, and get S⃗p(2) =
⟨k2⟩−⟨k⟩

N .
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Lemma 6. The sum of Bv and Be over all nodes can both be expressed as the function of the area under the curve
of S⃗p. ∑

i∈V

Bv (i) =
N

N− 2
(Λ− 1) =

N2

(N− 2)(N− 1)

∑Lmax

j=0 j⃗Sp ( j)−
N

N− 2
(D.1)

∑
l∈E

Be (l) = Λ =
N2

N(N− 1)

∑Lmax

j=0 j⃗Sp ( j) (D.2)

Proof 6. In [49], it is strictly proven that the sum of the node betweenness approximately equals N(Λ−1)
(N−2) , and

that the sum of the link betweenness approximately equals Λ. Integrated with the approximation of Λ by the
area under the curve of S⃗p, we get lemma 6.
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